Monday 7 April 2014

rotating worlds with rotating magnetic field...

The rotating magnetic field is a fundamental principle in physics and one of the greatest discoveries of all times.  In February 1882, Tesla was walking with a friend through a city park in Budapest, Hungary reciting stanzas from Goethe's Faust.  The sun was just setting.  Suddenly the solution of the rotating magnetic field, he had been seeking for a long time, flashed through his mind.  At this very moment he saw clearly in his mind an iron rotor spinning rapidly in an rotating magnetic field produced by the interaction of two alternating currents out of step with each other.  One of the ten greatest discoveries of all times was born at this glorious moment.
Goethe's Faust was an inspiration for Nikola Tesla.  He knew by heart the Faust.  By reciting the Faust in the park in Budapest, he discovered the rotating magnetic field which is the heart of his induction motor and alternating current electricity.  It is also a basis for MRI technology, therefore Tesla's name was honored with the Tesla Unit, used to measure the capacity of MRI machines.
In this painting of 1829-31Goethe is shown dictating to his secretary the second part of the Faust.  The small and simply furnished study room, which he called 'humble quarters', suited his inner creative life.  By the time of this portrait Goethe was already a world figure, a man of unique character and abilities who had a widespread influence on his own times.


A symmetric rotating magnetic field can be produced with as few as two polar wound coils driven at 90 degrees phasing. However, 3 sets of coils are nearly always used because it is compatible with symmetric 3 phase ac suppl. The three coils are driven with each set driven 120 degrees in phase from the others. For the purpose of this example, the magnetic field is taken to be the linear function of the coil's current.
Sine wave current in each of the coils produces sine varying magnetic field on the rotation axis. Magnetic fields add as vectors.
Vector sum of the magnetic field vectors of the stator coils produces a single rotating vector of resulting rotating magnetic field.

The result of adding three 120-degrees phased sine waves on the axis of the motor is a single rotating vector. The rotor has a constant magnetic field. The N pole of the rotor will move toward the S pole of the magnetic field of the stator, and vice versa. This magneto-mechanical attraction creates a force which will drive the rotor to follow the rotating magnetic field in a synchronous manner.
U.S. Patent 381968: Mode and plan of operating electric motors by progressive shifting; Field Magnet; Armature; Electrical conversion; Economical; Transmission of energy; Simple construction; Easier construction; Rotating magnetic field principles.
A permanent magnet in such a field will rotate so as to maintain its alignment with the external field. This effect was utilized in early alternating current electric motors. A rotating magnetic field can be constructed using two orthogonal coils with a 90 degree phase difference in their AC currents. However, in practice such a system would be supplied through a three-wire arrangement with unequal currents. This inequality would cause serious problems in the standardization of the conductor size. In order to overcome this, three-phase systems are used where the three currents are equal in magnitude and have a 120 degree phase difference. Three similar coils having mutual geometrical angles of 120 degrees will create the rotating magnetic field in this case. The ability of the three phase system to create the rotating field utilized in electric motors is one of the main reasons why three phase systems dominate in the world electric power supply systems.
Rotating magnetic fields are also used in induction motors. Because magnets degrade with time, induction motors use short-circuited rotors (instead of a magnet) which follow the rotating magnetic field of a multicoiled stator. In these motors, the short circuited turns of the rotor develop eddy currents in the rotating field of the stator which in turn move the rotor by Lorentz force. These types of motors are not usually synchronous, but instead necessarily involve a degree of 'slip' in order that the current may be produced due to the relative movement of the field and the rotor.

tesla's invention that could has changed the world of electricity but...!


To understand how a Tesla coil works you need to understand a couple of points about its components.

1) Inductors:
The Tesla coil's primary and secondary coils are both inductors in electrical terms. When the current flowing through an inductor changes, it will create an opposing or reverse voltage.
A Wikipedia Article for all the theory

2) Spark Gaps:
A sparking plug in a car is a simple spark gap, its break down voltage depending on the electrode gap. Once a spark gap conducts it has the ability to carry on so long as a reasonable current is flowing (hot ionized air in the gap).

3) Capacitor:
A good analogy for a capacitor is to regard it as a sponge that is placed on some spilt water and left to slowly soak it up. If you leave it a minute then give it a very quick, hard squeeze, a large amount of water is released all at once, this is one minutes worth of slow soaking-up released in a mere fraction of a second.
In a Tesla coil the so called soaking-up stage lasts for a few milliseconds, but the squeezing-out can be a thousand times quicker, lasting for a few micro or millionths of a second.
Wikipedia Article

4) Resonance:
The property of resonance is fundamental to the operation of all Tesla coils.
A good analogy is the garden swing. If it is left to swing on its own it does so at its resonant frequency, only slowing down due to friction and gravity.
If you stand behind the swing and push it just as it swings away from you each time, it will get higher with each subsequent push. This is because you are adding power at, and only at, the correct time-point in the swings cycle.
You are therefore adding momentum at the same time interval as the swings resonant frequency, this means the push you gave it, is in resonance with the swing.

Resonance does not increase the overall amount of energy, it only facilitates its transfer.
So if you're looking for tesla related, so-called 'free energy, or 'zero point' energy information, which some people seem to associate with tesla coils, this is not the site for you!

5) Resonant Circuit
If a capacitor is placed across an inductor you will have a resonant circuit. As the capacitor discharges, it sends current into the inductor that will then store this as energy in its magnetic field. But as the capacitor discharges the current feed into the inductor diminishes. This then causes its magnetic field to collapse and generate an opposing voltage that goes back into charging up the capacitor, and the cycle starts all over again. The number of times that this 'back and forwards' cycle happens per second, is its resonant frequency, expressed in Hertz (Hz). Because of resistive losses the current is reduced every cycle down to zero. There is no such thing as free energy!


A Tesla coil has two separate parts, the primary and secondary circuits, each of these consists of a capacitor and an inductor, so they each become resonant circuits when voltage is applied. The secret behind a good Tesla coil is making both resonant at the same frequency, allowing them to interact with one another.
Using the analogy of the swing again, the actual swing part becomes the secondary coil, while the role of the person pushing is taken by the primary coil. This gives the secondary (the swing) a push at just the correct time. The push in this case consisting of additional power, though for this to occur it is imperative that they both have the same resonant frequency.

This resonant frequency is a product of the capacitance value in Farads (C), and the inductor's value in Henries (L).

Tesla frequency
Using different values of capacitance and inductance will give a different frequency.




badge

In the circuit of Fig 1 above, the capacitor ('C') is charged up by a high voltage source, like my example of the sponge soaking up water.

Once the capacitor attains a high enough voltage the spark gap fires and conducts (Fig 2 below). The spark gap is now a short-circuit that completes the resonant circuit (shown in red) of the primary inductor and capacitor.

badge
The spark gap firing is virtually an instantaneous discharge of the capacitor energy into the inductor and is the same as the example of the sponge being instantaneously squeezed out.
The inductor stores this energy in its magnetic field with the lines of force cutting into the secondary coil and inducing a voltage into it. Once the capacitor is empty the current flow into the inductor stops, and its magnetic field collapses causing a reverse current to flow back into the capacitor again.

This back and forth diminishing cycle (called the 'Primary Ringdown') of capacitor to inductor and back, continues untill there is insufficient current flowing to keep the spark gap conducting. The point to remember is that every time the cycle occurs, more energy is transferred to the secondary, so the inductors magnetic field stores less energy on each cycle.

Unfortunately every time the spark gap conducts, losses occur in the form of heat and light, so you want the minimum number of cycles that are consistent with getting all of the available energy transferred to the secondary.
Usually after two, three, or possibly four cycles the majority of the energy has been transferred and the primary current has dropped enough to allow the spark gap to stop conducting (called quenching).

Once the spark gap has quenched it allows the capacitor to get a fresh charge and the whole affair can start again.


The amount of energy available to be sent to the primary (measured in Joules) is equal to the 0.5 x C x V^2
C = Farads
V = voltage that the gap fires at.

You can see here that doubling the value of C (provided your power source is robust enough) will give you twice the power. But doubling the voltage that the capacitor is charged up to will give 4 times the power, because the voltage value is squared, that's why if you want spark length its best to go for a higher voltage power source.

While the primary circuit is resonating and transferring its energy, the following is also occurring in the secondary circuit at the same time .........

The toroid on top of the coil acts like a capacitor with respect to the surrounding ground. This is easier to see in the diagrams below.

Fig 1 is the same as Fig 2, because in reality the toroid discharges through the air to earth. If you now replace the toroid with the symbol for a capacitor (Fig 3) and re-arrange things, you end up with Fig 4.

badge

This means that the secondary coil is also a resonant circuit and it behaves much like the primary circuit. The secondary's energy is therefore also resonating back and forth between the coil and the toroid. However it does not dampen down the same as the primary does, in fact it is steadily increasing.

This is because at just the right time-point in its cycle (like you pushing that swing in the example) another magnetic field from the primary circuit, which remember is also resonating at the same frequency, transfers a bit more of its stored energy into the secondary circuit.

Therefore as the primary ringdown is occurring causing the primary to loose its energy, the secondary is gaining power in what is called the Secondary Ring-up.
Remember the primary and the secondary need to have the same resonant frequencies for them to interact successfully. Typically this is in the hundreds of Kilo-Hertz.
Eventually the voltage on the surface of the toroid at the top, rises so high that the curved surface cannot retain the charge anymore, and breakout occurs. This will either be a misty purple corona discharge or, if all components are suitably balanced to one another, a whitish solid streamer down to earth or into the air.


badge


In a perfect Tesla coil once breakout has occurred this would be the end of the matter, allowing a fresh charging cycle to start all over again. What usually occurs though is that as the secondary's field starts collapsing it starts to transfer its energy back into the primary again. This is because the hot ionized spark gap in the primary charging circuit is still able to conduct the somewhat reduced energy now being returned by the secondary.

This means that any remaining energy in the collapsing secondary, that could have gone into prolonging the discharge, is wasted by being sent back into the primary instead. This can result in the whole of the primary to secondary transfer cycle occurring again, and in the worst cases even three of four times.

What is the problem with that you say? Well firstly it is better to have all the energy forming one high charge, rather than several cycles of successive diminishing charges.
And secondly no new energy from the power source can be added to the circuit until the spark gap has quenched, and that can't happen untill the present cycle stops.

There are various ways to overcome the problem of these unwanted cycles. In a so called static spark gap you can use either suction or a fan to both remove the hot ionized air from between the electrodes and also cool them, as both actions help quenching.

Another method is the rotary spark gap. In these the spark gap consists of a fixed electrode while the other revolves, much the same as a distributor in a car engine. These spark gaps come in two different types. Asynchronous [ARSG] and Synchronous [SRSG], the latter being where the position of the rotating electrodes in each revolution, is directly linked to the mains frequency cycle, whilst the Asynchronous system is not.
With the synchronising system, you arrange for the revolving electrodes to come into alignment with the fixed ones when the AC cycle is near its peak (normally you aim for approx' 1mS or so afterwards). This allows the capacitor to discharge into the primary, at the optimum time in its charging cycle. The revolving electrodes also disturb the surrounding air to assist with their own cooling.

It's not the actual separating action of the revolving electrodes that quenches the arc though, this is because a spark can be stretched quite significantly once struck. Quenching occurs naturally at one of the primary notches, and hopefully this quenching notch will occur once the electrodes have moved sufficiently out of alignment, before the capacitor has recharged sufficiently to start the cycle all over again.

Asynchronous gaps, because they use revolving electrodes, also fire at an even rate, but in their case it is independent of where the AC cycle is. This means that the capacitor may not be fully charged at the time of firing. It can also mean that the opposite situation can arise where a higher than normal voltage can occur across the capacitors and the HV supply. For this reason Asynchronous systems should not be used with an NST, because they can sometimes be rather fragile when subjected to high voltage spikes.

Even rotary spark gaps have their short-falls though. As the voltage that the spark gap handles is increased the timing tends to become advanced. This is because the higher voltages from the bigger transformers (usually 15,000>) means the spark is able to jump the gap between the static electrode and the rapidly approaching rotating one, before they actually line up.

With a Synchronous spark gap [SRSG] this can be overcome by adjusting the Phasing of the AC input to the motor using inductors and capacitors. This way the position of the revolving electrodes can be finely adjusted in relation to the fixed ones.




Who Builds Tesla Coils?

These are the locations of visitors to the website over the last 2 days from 11th July 2013.


tesla coil